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About Me

Andrew Lee-Thorp

@Synopsys Software Integrity Group (from Coverity, 

Codenomicon and others + Cigital)

Android assessments, tool development, system design and 

development, code review, cutting code, threat modelling

> 10 yrs cutting code, nearly 10 yrs in security
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Why this talk?
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Agenda

• Introduction

• Framework APIs and the developer perspective

• Fingerprint for local authentication

• Using fingerprint to unlock hardware-backed keys

• Fingerprint spoofing

• A journey from normal world to secure world and a short detour into TrustZone

• What can go wrong?
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Fingerprint HAL and requirements introduced in 

Marshmallow (6.0)

Figures on 26 October, 2018

> 70% on Android 6.0 or later
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Benefits

• Streamlined user authentication

– Performance and usability benefit

– “Single sign-on”

• Previously: “alignment” with iPhone, iPad
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Stakeholders and entities

• End users: am I secure?

• Organisations, e.g. banks: will I put my users at risk?

– Corollary: will I suffer any reputational damage?

– How does fingerprint compare to PIN?

– How does did it compare to touchid (iOS)?

– Is fingerprint as a second factor?

• Security researchers:

– How can I attack the system?

• Device manufacturer, e.g. Samsung, Sony

• System-on-chip vendor, e.g. Qualcomm, HiSilicon, MediaTek

• Fingerprint sensor vendor, e.g. FPC, Synaptics, Goodix

• Google & AOSP
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Risks

• Physical

– Fingerprint Forgery (aka spoofing)

• Application risks

– Misuse of the APIs

• Multiple technical risks due to the implementation

– Multiple critical hw and sw components are involved, each provided by different 3rd party (vendor)

– 3rd Party ==> proprietary, non-standard, unknown

– Any one component failure “could” compromise the overall security

– Built on TrustZone

• Disclosure of fingerprint material (image) or derived material (template)

– Bugs

– Backdoors

• Bypass Fingerprint Authentication

– Trick the app

– Trick the system

– Trick the user (“clickjacking” / confused deputy attack)
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Android Compatibility Definition Document

Enumerates the requirements that must be met

[C-1-5] MUST rate limit attempts for at least 30 seconds after five false trials

7.3.10.1. Fingerprint Sensors

[SR] STRONGLY RECOMMENDED that spoof and imposter acceptance rate not > 7%.

[C-1-8] MUST first establish a chain of trust by first establishing PIN/pattern/password

that's secured by TEE.

[C-1-2] MUST fully implement the corresponding API as described in the Android SDK

documentation.
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Framework support
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<uses-permission android:name="android.permission.USE_FINGERPRINT" />

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
enabledFingerprints = true;

}

FingerprintManager.isHardwareDetected()

KeyguardManager.isDeviceSecure()

FingerprintManager.hasEnrolledFingerprints()

FingerprintManager.authenticate(cryptObject, cancellationSignal, flags, 
callback, handler)

Step 1: check for hardware support and device security 

enabled

Step 2: request authentication, provide callback
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public class MyCallback extends FingerprintManager.AuthenticationCallback {

@Override
public void onAuthenticationError(…) {
}

@Override public void onAuthenticationHelp(…){
}

@Override public void onAuthenticationFailed() {
}

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// result contains the cryptObject

Step 3: Handle result
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BiometricPrompt (Android Pie)

Standardises the UI, changes the flow

@Override
public void onAuthenticationError(…) {
}

BIOMETRIC_ERROR_NO_BIOMETRICS - no fingerprint (biometric) enrolled.

BIOMETRIC_ERROR_HW_NOT_PRESENT -  fingerprint (biometric) sensor not present

BIOMETRIC_ERROR_HW_UNAVAILABLE

<uses-feature
android:name="android.hardware.fingerprint" android:required="true" />

Google play store feature (unrelated to Biometric Prompt)
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API details are hidden in the fine print

if (!keyguardManager.isKeyguardSecure()) {
// Show a message that the user hasn't set up a fingerprint or 

lock screen.
Toast.makeText(this,

"Secure lock screen hasn't set up.\n"
+ "Go to 'Settings -> Security -> Fingerprint' to 

set up a fingerprint",
Toast.LENGTH_LONG).show();

purchaseButton.setEnabled(false);
purchaseButtonNotInvalidated.setEnabled(false);
return;

}

https://github.com/googlesamples/android-FingerprintDialog

Do not use isKeyguardSecure.
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API details are in the fine print

7
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3. Authentication flow options

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// ignore cryptObject
authenticationSucceeded = true;

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// use the cryptoObject to sign server challenge
// really remote authentication
trySignChallenge(result.getCryptoObject().getCipher(), challenge);

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// use the cryptoObject on locally encrypted data (e.g. shared prefs)
tryDecrypt(result.getCryptoObject().getCipher());

1

2

3
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Local authentication

App “authenticates” user using device credentials – fingerprint, PIN, …
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Bypassing local authentication

Local authentication is using fingerprint verification to authorize an action locally

public class FingerprintUiHelper extends 
FingerprintManager.AuthenticationCallback {

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// result contains the cryptObject

Poor integration of the authentication flow can be bypassed by privileged attacker.
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Attacking local authentication

https://github.com/googlesamples/android-FingerprintDialog and frida

https://github.com/googlesamples/android-FingerprintDialog
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Fingerprints and the Keystore
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TEE Backed Keystore

Conformant fingerprint implementations, for devices released with Android 6.0 or later, must 

make use of a hardware-backed keystore (i.e. keystore backed by a TEE).

SecretKey sk = keyGenerator.generateKey();

SecretKeyFactory factory =

SecretKeyFactory.getInstance(sk.getAlgorithm(), "AndroidKeyStore");

KeyInfo keyInfo = (KeyInfo) factory.getKeySpec(sk, KeyInfo.class);
if (keyInfo.isInsideSecureHardware()) {

enabledFingerprints = true;
}

Key material + operations stay inside secure hardware

We found that some key combinations are software-backed – inconsistent across devices
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Key Use Bound to Authentication Event

• Unlock key in AndroidKeyStore using fingerprint. 

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES", 
"AndroidKeyStore");
keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,

KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
.setBlockModes(KeyProperties.BLOCK_MODE_GCM)
.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)
.setUserAuthenticationRequired(true)
.setUserAuthenticationValidityDurationSeconds(60)
.setUserAuthenticationValidWhileOnBody(false)
.setInvalidatedByBiometricEnrollment(true) // SDK >= 24

.build());
SecretKey key = keyGenerator.generateKey();

7 KEY REMAINS UNLOCKED 

FOR 60 seconds

NOT RECOMMENDED
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In reality …

“By default, if user authentication is required, it must take place for every use of the key. “

keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,
KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)

.setBlockModes(KeyProperties.BLOCK_MODE_GCM)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)

.setUserAuthenticationRequired(true) *

.setUserAuthenticationValidityDurationSeconds(60) **

.setUserAuthenticationValidWhileOnBody(false)

• “Requiring authentication” has no effect unless key duration is in [-1,0]

• Device just needs to be unlocked.

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationValidityDurationSeconds(int)
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Attacker enrols new fingerprint, tries to authorises use of 

the key

// SDK >= 24
KeyGenParameterSpec.Builder.setInvalidatedByBiometricEnrollment(true)

INVALIDATE KEY ON NEW ENROLLMENT
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What if the KeyGenerator specification is “bad”?

… then what should happen below?

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES", 
"AndroidKeyStore");
keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,

KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
.setBlockModes(KeyProperties.BLOCK_MODE_GCM)
.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)
.setUserAuthenticationRequired(true)
.setUserAuthenticationValidityDurationSeconds(60)
.setUserAuthenticationValidWhileOnBody(false)
.setInvalidatedByBiometricEnrollment(true)

.build());
SecretKey key = keyGenerator.generateKey(); // ???
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Documentation is silent

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setInvalidatedByBiometricEnrollment(
boolean)
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Fingerprint Spoofing
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Fingerprint Spoofing
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Spoofing and the CDD

• [C-1-4] MUST disclose that this mode may be 

less secure than a strong PIN, …, and clearly 

enumerate the risks of enabling it, if the spoof 

and imposter acceptance rates are higher than 

7% (Introduced Android 8.1 CDD)

The Spoof Accept Rate (SAR) is the “chance that a 

biometric model accepts a previously recorded, known 

good sample”. For fingerprint sensors, using a mould of 

an enrolled fingerprint to unlock a user's phone counts 

as a spoof attack

• [SR] Are STRONGLY RECOMMENDED to have a 
spoof and imposter acceptance rate not higher 
than 7%
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Grandma’s recipe

Step One: For the creation of moulds for

casting fingerprints a negative (-ve)

fingerprint impression is first taken in a

suitable moulding material such as

Sugru/Pratley Putty as outlined below:

1. Form a ball from mould material.

2. Press firmly onto to mould material.

3. Leave to cure until non-pliable.
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Steps two and three

Step Two: Create the cast material by heating gelatin

powder and water as shown below:

1. Add gelatin powder to water in a ratio approximately 

between 0.8:1 and 1:1 volume parts of gelatin to water.

2. Warm at low heat, stirring constantly.

3. Do not boil.

4. Remove from the heat and leave to cool.

Step Three:

1. Pre-conditions (a) the mould has set/hardened and (b) 

the casting material is now viscous but cooled.

2. Pour the casting material into the mould and leave to 

set.
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A short spoofing video
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03-10 04:04:32.188  1202  1359 D fpc_tac : capture image start

03-10 04:04:32.330  1202  1359 D fpc_tac : capture image end

03-10 04:04:32.330  1202  1359 D fpc_fingerprint_hal: fpc_notificator: type 2

03-10 04:04:32.330  1202  1359 D fpc_hidl: onAcquired(code=6, vendor=1)

03-10 04:04:32.330  1202  1359 D libfingerprint_core: _push_message: message passed

03-10 04:04:32.332  1921  1921 W FingerprintManager: Invalid acquired message: 6, 1

03-10 04:04:32.344  1202  1359 D fpc_tac : IDD_identify_stat KPI Capture time: 0 ms Identify time: 13 

ms

03-10 04:04:32.350  1202  1359 D fpc_tac : IDD_identify_stat: hwid 0x711 res: 1 cov: 93, qual: 33, 

covered zones: 4095, score: 93, idx: 0

03-10 04:04:32.352  1202  1359 D fpc_fingerprint_hal: fpc_notificator: type 2

03-10 04:04:32.352  1202  1359 D fpc_hidl: onAcquired(code=0, vendor=0)

03-10 04:04:32.352  1202  1359 D libfingerprint_core: _push_message: message passed

03-10 04:04:32.355  1202  1359 D fpc_fingerprint_hal: fpc_notificator: type 1

03-10 04:04:32.355  1202  1359 D libfingerprint_core: task_set_tryagain: task 'authenticate' restart = 0

03-10 04:04:32.355  1202  1359 D fpc_hidl: onAuthenticated(fid=-1435385119, gid=0)

Logs can help identify good models

[C-1-9] MUST NOT enable 3rd-party applications to distinguish between individual fingerprints.
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[System -> Kernel] -> [TEE]

A journey from normal world to secure world
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fingerprintd

https://android.googlesource.com/platform/system/core/+/nougat-release/fingerprintd/fingerprintd.cpp

int main() {
ALOGI("Starting " LOG_TAG);
android::sp<android::IServiceManager> serviceManager = 
android::defaultServiceManager();
android::sp<android::FingerprintDaemonProxy> proxy =

android::FingerprintDaemonProxy::getInstance();
android::status_t ret = serviceManager->addService(

android::FingerprintDaemonProxy::descriptor, proxy);
...
/*
* We're the only thread in existence, so we're just going to process
* Binder transaction as a single-threaded program.
*/

android::IPCThreadState::self()->joinThreadPool();
ALOGI("Done");
return 0;

1. Export a binder

2. Load HAL implementation

3. Proxy binder calls via in-

process proxy to HAL 

implementation
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HAL implementation

… but we can reverse it and identify HAL functionality, trustlet command ids, and extended functionality

1. Implements the functions in libhardware/include/hardware/fingerprint.h

2. Communicate with the device specific hardware

3. Is closed source

__int64 __fastcall BAuth_Enroll_Init(int *a1, __int64 a2, unsigned int a3, int a4, 
_DWORD *a5, int a6, __int64 a7)
{
...
__android_log_print(3LL, "bauth_TLC_Communicator", "Call FP cmd 0x%x", 2LL);
if ( !gVFMQSEEHandle )
{
...
v19 = QSEECom_send_cmd(*(_QWORD *)
gVFMQSEEHandle, v15, 384LL, v16, 64LL);

D bauth_FPBAuthService: fpop : 100023
D fingerprintd: onAcquired(10004)
D bauth_TLC_Communicator: Call FP cmd 0x2
D bauth_TLC_Communicator: Check the Trustlet return code is 
completed
D bauth_FPBAuthService: check_opcode status = 1, opcode = 0, 
func_ret_val = 0, function_status = 0, timeout = 0
D bauth_FPBAuthService: FPBAuthService, 1032 … and correlate the command ids with the trustlet

and logs
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A very short detour on some aspects of TrustZone and 

TEEs
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Exception Levels

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDDAHFB.html, A73, e.g. A8+

3.2.2 Exception levels

The Armv8 exception model defines exception levels EL0-EL3, where:

• EL3 provides support for a Secure state, see 3.2.3 Security state.

Typical exception level usage model

• EL0 Applications.

• EL1 OS kernel and associated functions that are typically described as 

privileged.

• EL2 Hypervisor.

• EL3 Secure monitor.

http://infocenter.arm.com/help/topic/com.arm.doc.100048_0100_06_en/jfa1406793214854.html
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Security state

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDDAHFB.html, A73, e.g. A8+

3.2.3 Security state

Secure state

In Secure state, the processor:

• Can access both the Secure memory address space and the Non-secure 

memory address space.

• When executing at EL3, can access all the system control resources.

Non-secure state

In Non-secure state, the processor:

• Can access only the Non-secure memory address space.

• Cannot access the Secure system control resources.
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Trust is inherently asymmetrical

In Secure state, the processor:

• Can access both the Secure memory address 

space and the Non-secure memory address 

space. • Dubbed “boomerang attack”, Aravind Machiry

et al.

• QSEE privilege escalation vulnerability and 

exploit (CVE-2015-6639, Gal Beniami)

• Userland -> system service (media server) -> 

… -> QSEE (Widevine trustlet) -> Linux kernel

Trustlets can access normal-world 

memory

Shared Nwd and Swd buffers are allocated in Nwd and the (physical) address is mapped into a 

trustlet virtual address by TEE OS system call from within the trustlet.
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Secure 

Monitor 

Call 

instruction 

from Nwd

kernel

static noinline int smc_send(uint32_t cmd, phys_addr_t cmd_addr,
uint32_t cmd_type, uint8_t wait)

{
/*tlogd("start to send smc to secure\n");*/
register u64 x0 asm("x0") = cmd;
register u64 x1 asm("x1") = cmd_addr;
register u64 x2 asm("x2") = cmd_type;
register u64 x3 asm("x3") = cmd_addr >> 32;
do {

asm volatile(
__asmeq("%0", "x0")
__asmeq("%1", "x0")
__asmeq("%2", "x1")
__asmeq("%3", "x2")
__asmeq("%4", "x3")
"smc #0\n"
: "+r" (x0)
: "r" (x0), "r" (x1), "r" (x2), "r" (x3));

} while (x0 == TSP_REQUEST && wait);
return x0;

}

kernel/drivers/hisi/tzdriver/smc.c

Huawei Mate 10 (Kirin 970)

Transfer control to TEE kernel
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AxPROT signal

Allows TEE to assert that the 
signal originated from code 
that is

• Privileged (as opposed to 
normal)

• Secure world (as opposed to 
non-secure world)
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Exploring the system
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What could go wrong?
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Testing a device

1. Build a reference fingerprint system threat model.

Revise and adapt the model(s) for different implementations.

2. Evaluate a device by verifying that the observed controls, e.g. fingerprint template 

protection, adhere to the reference threat model.

Looking for evidence of doing stupid things.

Not vulnerability hunting!

Will miss hard to find issues and hard to test issues

Is the device under test a “valid” implementation of the model?
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Reference model(s)
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Threat model

• Example malicious actors:

• Privileged malware

• Malicious vendor or careless vendor

• Physical attacker (with access to 

fingerprint models)

• Rogue trustlet

• Example controls:

• Trusted applications are signed

• Template operations inside TEE

• Templates are cryptographically authenticated

• Device specific hardware key

• Virtual device Linux file permissions, SELinux permissions set 
appropriately
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What could go wrong?

• Many mistakes possible:

• Weak device configuration

• Sensor accessible from Nwd

• Vulnerabilities in TEEOS

• Vulnerabilities in trusted application

• Template operations in Nwd

• Backdoors

• Template data outside the TEE

• Template data usable on another device

• Scan data outside the TEE

• Template data not authenticated

• Trusted application not signed

• Downgrade attack

• Fingerprint spoofing

• Application errors
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Access the sensor directly from normal 

world

Implementation guidelines

The following Fingerprint HAL guidelines are designed to ensure that fingerprint data is not 

leaked and is removed when a user is removed from a device:

1. Raw fingerprint data or derivatives (e.g. templates) must never be accessible from outside 

the sensor driver or TEE. If the hardware supports it, hardware access must be limited to 

the TEE and protected by an SELinux policy. The Serial Peripheral Interface (SPI) channel 

must be accessible only to the TEE and there must be an explicit SELinux policy on all 

device files.

https://source.android.com/security/authentication/fingerprint-hal
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AxPROT signal

Supposed to checked by 

fingerprint sensor

• Blackhat USA 15: Fingerprints  On  

Mobile  Devices, Tao  Wei  and  

Yulong  Zhang

• HTC  One  Max  and  Samsung  

Galaxy  S5
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Difficult to test

Source code may be 

released months later

Disclaimer: not suggesting **this** device vulnerable

Nokia 8 release date: mid 2018
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Implementation guidelines

1. … and there must be an explicit SELinux policy on all device files.

https://source.android.com/security/authentication/fingerprint-hal

Access the kernel device from unprivileged 

process?

judyln:/system $ ls -lZ /dev/goodix_fp

crw-rw-rw- 1 root u:object_r:goodixfingerprintd_device:s0 225,   0 2017-
03-26 23:36 /dev/goodix_fp

We found explicit SELinux policy on all devices though some have weak Linux file permissions
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Trustlet signing

• Qualcomm & Mobicore/Trustonic trustlets are signed

• Huawei trustlets are encrypted – could not verify

Encrypted trustlets on Huawei P10 VTR-AL00 device
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Signature chain sometimes expired
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Chain of trust
[C-1-8] First establish chain of trust (PIN/pattern/password)

All devices enforced this …

…, however, weak stock questions allow PIN reset
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Fingerprint spoofing

[C-1-5] MUST rate limit attempts for at least 30 seconds after five false trials for

fingerprint verification.

All devices locked the screen after five attempts

… but then some continued to process fingerprint attempts

… and logged the result along with quality metrics



© 2019 Synopsys, Inc. 63

Attack: copy fingerprint template from 

another device

Implementation guidelines:

“Fingerprint templates must be signed with a private, device-specific key.” 
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Defense: derive a device specific key

__int64 __cdecl fp_get_uniquekey()
{

int(*v0)(int, const char *, const char *, ...); // x19
unsigned int v1; // w0
__int64(*v2)(__int64, const char *, ...); // x3

v0 = g_pLogFunction;
(*g_pLogFunction)(8LL, "%s Init", qword_6A3320);
(*v0)(8LL, "fp_get_uniquekey start");
v1 = qsee_kdf(0, 32, aSamsungSecurit, 32, aFpDeviceKey, 32, g_UniqueKey, 64);
v2 = *v0;
if (!v1)

return v2(8LL, "fp_get_uniquekey success end");
v2(8LL, "qsee_kdf error rv = %d", v1);
return (*v0)(8LL, "get_uniquekey failed");

}

Template wrapping (encrypt and HMAC) is done in the trustlet
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Attack: exploit vulnerabilities in trusted 

application

• Written in C

• Buffer overflows, integer wrapping, out of secure world writes

• Complex command/template parsing logic

• Compile-time hardening (e.g. stack protector) mostly absent
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Demo
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What’s next?

Incremental improvements
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Improved isolation

• Trustzone:

• The two worlds share the same hardware: isolation achieved through the use 

of CPU registers and a non-secure (NS) bit.

• Separate processor on same SoC:

• Qualcomm Snapdragon SDM845 and SDM855 Secure Unit Processor

–Closer  parity with Apple’s Secure Enclave

• Other vendors to follow suit?

–E.g. google bought HTC Mobile

• Addresses the issue that TrustZone applications now form a large TCB

• Doesn’t solve many of the other design properties (nor does it claim to) 
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Key attestation

• Attest that key is stored in a device's hardware-backed keystore.

• Relying party checks certificate chain signed by “Google attestation root key”

• Very small step closer to “evidence” for a second factor

• Keymaster 3:

enum class HardwareAuthenticatorType : uint32_t 
{

NONE = 0u, // 0
PASSWORD = 1 << 0,
FINGERPRINT = 1 << 1,
ANY = UINT32_MAX,

};

https://source.android.com/security/keystore/tags#user_auth_type

https://developer.android.com/training/articles/security-key-attestation
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Key takeaways

• There isn’t a single “Android” fingerprint system

– Vendors have considerable flexibility to implement subject to CDD and guidance 

constraints

• Plenty of opportunities to make mistakes:

–Nwd Apps

–Nwd and Swd fingerprint components

• TEE is a high-value target:

– Image and template processing involves plenty of complex logic: bugs highly likely

–Lack of defensive measures such as stack canaries being used

• TEE TCB is becoming large.

–E.g. rogue/vulnerable trusted application could derive template key
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A parting question

Can the fingerprint design on Android somehow be 

used to support two-factor auth?

Thank you!




