SYNOPSYs

Silicon to Software”

The Android fingerprint system

Andrew Lee-Thorp
Synopsys Software Integrity Group

About Me

Andrew Lee-Thorp

@ Synopsys Software Integrity Group (from Coverity,
Codenomicon and others + Cigital)

Android assessments, tool development, system design and
development, code review, cutting code, threat modelling

> 10 yrs cutting code, nearly 10 yrs in security

© 2019 Synopsys, Inc. 2 S‘/"UPS‘/S

Why this talk?

© 2019 Synopsys , Inc. 3 Synl]PSysu

Agenda

* Introduction

* Framework APIs and the developer perspective

 Fingerprint for local authentication

 Using fingerprint to unlock hardware-backed keys

 Fingerprint spoofing

A journey from normal world to secure world and a short detour into TrustZone
* What can go wrong?

© 2019 Synopsys, Inc. 4 SynUPSyS

Fingerprint HAL and requirements introduced In
Marshmallow (6.0)

© 2019 Synopsys, Inc.

Mougat
Oreo
—..I—LGingerbrnad
_‘\ lee Cream Sandwich
Jelly Baan
Kitkat
Marshmallow

Lollipop

Figures on 26 October, 2018

> 70% on Android 6.0 or later

SYNOPSYS

Benefits

» Streamlined user authentication
— Performance and usability benefit
—“Single sign-on”

 Previously: “alignment” with iPhone, iPad

i

© 2019 Synopsys, Inc. 6 S‘/"UPS‘/SQ

Stakeholders and entities

* End users: am | secure?

* Organisations, e.g. banks: will | put my users at risk?
— Corollary: will | suffer any reputational damage®?
—How does fingerprint compare to PIN?
—How dees did it compare to touchid (I0S)?
—Is fingerprint as a second factor?

« Security researchers:
—How can | attack the system?

» Device manufacturer, e.g. Samsung, Sony

» System-on-chip vendor, e.g. Qualcomm, HiSilicon, MediaTek
 Fingerprint sensor vendor, e.g. FPC, Synaptics, Goodix

» Google & AOSP

© 2019 Synopsys, Inc. 7 S‘/"UPS‘/S

Risks

 Physical
— Fingerprint Forgery (aka spoofing)
* Application risks
— Misuse of the APlIs
» Multiple technical risks due to the implementation
— Multiple critical hw and sw components are involved, each provided by different 3/ party (vendor)
— 3" Party ==> proprietary, non-standard, unknown
— Any one component failure “could” compromise the overall security
— Built on TrustZone
* Disclosure of fingerprint material (image) or derived material (template)
—Bugs
— Backdoors
» Bypass Fingerprint Authentication
— Trick the app
— Trick the system
— Trick the user (“clickjacking” / confused deputy attack)

© 2019 Synopsys, Inc. 8 SynUPSyS

Android Compatibility Definition Document

Enumerates the requirements that must be met

7.3.10.1. Fingerprint Sensors

[SR] STRONGLY RECOMMENDED that spoof and imposter acceptance rate not > 7%.

[C-1-5] MUST rate limit attempts for at least 30 seconds after five false trials

[C-1-8] MUST first establish a chain of trust by first establishing PIN/pattern/password
that's secured by TEE.

[C-1-2] MUST fully implement the corresponding API as described in the Android SDK
documentation.

© 2019 Synopsys, Inc. 9 Syn[]PSySe

Application FingerprintManager

Requests authentication of CryptoObject—>

yw APP Vendor | Google

Abstraction glue

FingerprintService

Makes callbacks

System o .

Manages client queues;

. Native Handles events for
Architect
rC I ec ure TEE Communication Sends fingerprint__| Fingerprint HAL Delogates to— Fingerprintd
Library commands o
“Normal” world Native
Makes 10CTL calls TEE Communication Driver
Kernel

Makes SMC call

Switches CPU to Monitor Mode
TrustZone Kernel

TEE Kernel _ Sensor Driver
“Secure” WOI’|d Sensor Vendor
TrustZone Kernel
(TrUSted / SWd) POy ards SMIC call to handlers s m m - -
TrustZone
Fingerprint Trustlet F Use SRl
Process
d TrustZone
Phy5|cal FP Sensor

A

© 2019 Synopsys, Inc. lo S\/nUPS‘/SG

Framework support

© 2019 Synopsys, Inc. 12 SV"UPS‘/SG

Step 1: check for hardware support and device security
enabled

<uses-permission android:name="android.permission.USE_FINGERPRINT" />

if (Build.VERSION.SDK_INT >= Build.VERSION CODES.M) {
enabledFingerprints = true;

¥

FingerprintManager.isHardwareDetected()

FingerprintManager.hasEnrolledFingerprints()

KeyguardManager.isDeviceSecure()

Step 2: request authentication, provide callback

FingerprintManager.authenticate(cryptObject, cancellationSignal, flags,
callback, handler)

© 2019 Synopsys, Inc. 13 S‘/"UPS‘/S

Step 3: Handle result

public class MyCallback extends FingerprintManager.AuthenticationCallback {

@Override
public void onAuthenticationError(..) {

}

@Override public void onAuthenticationHelp(...){
}

@Override public void onAuthenticationFailed() {

}

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {
// result contains the cryptObject

© 2019 Synopsys, Inc. 14 SynUPSyS

BiometricPrompt (Android Pie)

Standardises the Ul, changes the flow

@Override
public void onAuthenticationError(..) {

¥

BIOMETRIC_ERROR_NO BIOMETRICS - no fingerprint (biometric) enrolled.
BIOMETRIC_ERROR_HW NOT_PRESENT - fingerprint (biometric) sensor not present
BIOMETRIC ERROR_HW UNAVAILABLE

<uses-feature
android:name="android.hardware.fingerprint"” android:required="true" />

Google play store feature (unrelated to Biometric Prompt)

© 2019 Synopsys, Inc. 15 S‘/"UPS‘/S

API detalls are hidden in the fine print

https://github.com/googlesamples/android-FingerprintDialog
Do not use isKeyguardSecure.

if (!keyguardManager.isKeyguardSecure()) {

// Show a message that the user hasn't set up a fingerprint or
lock screen.

Toast.makeText(this,
"Secure lock screen hasn't set up.\n"
+ "Go to 'Settings -> Security -> Fingerprint' to
set up a fingerprint"”,
Toast.LENGTH_LONG).show();
purchaseButton.setEnabled(false);

purchaseButtonNotInvalidated.setEnabled(false);
return;

© 2019 Synopsys, Inc. 16 S‘/"UPS‘/S®

APl detalls are in the fine print

iIsKeyguardSecure added in API level 16

public boolean isKeyguardSecure ()

Return whether the keyguard is secured by a PIN, pattern or password|or a SIM card is currently locked.

See also isDeviceSecure() which ignores SIM locked states.

boolean true if a PIN, pattern or password is set or a SIM card is locked.

© 2019 Synopsys, Inc. 17 SV"UPSYS®

3. Authentication flow options

@Override public void
o onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {
// ignore cryptObject
authenticationSucceeded = true;

@Override public void
9 onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {
// use the cryptoObject on locally encrypted data (e.g. shared prefs)
tryDecrypt(result.getCryptoObject().getCipher());

e @Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {
// use the cryptoObject to sigh server challenge
// really remote authentication

trySignChallenge(result.getCryptoObject().getCipher(), challenge);

© 2019 Synopsys, Inc. 18 S‘/"UPS‘/SG

Local authentication

App “authenticates” user using device credentials — fingerprint, PIN, ...

© 2019 Synopsys, Inc. 19 SV"UPS‘/SG

Bypassing local authentication

Local authentication is using fingerprint verification to authorize an action locally

public class FingerprintUiHelper extends
FingerprintManager.AuthenticationCallback {

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// result contains the cryptObject

Poor integration of the authentication flow can be bypassed by privileged attacker.

© 2019 Synopsys, Inc. 20 S‘/"UPS‘/S

Attacking local authentication

https://github.com/googlesamples/android-FingerprintDialog and frida

© 2019 Synopsys, Inc. 21 Syn[]PSySe

https://github.com/googlesamples/android-FingerprintDialog

Fingerprints and the Keystore

© 2019 Synopsys, Inc. 22 SV"UPS‘/SG

TEE Backed Keystore

Conformant fingerprint implementations, for devices released with Android 6.0 or later, must
make use of a hardware-backed keystore (i.e. keystore backed by a TEE).

Key material + operations stay inside secure hardware

SecretKey sk = keyGenerator.generateKey();
SecretKeyFactory factory =
SecretKeyFactory.getInstance(sk.getAlgorithm(), "AndroidKeyStore");

KeyInfo keyInfo = (KeyInfo) factory.getKeySpec(sk, KeyInfo.class);
if (keyInfo.isInsideSecureHardware()) {
enabledFingerprints = true;

¥

We found that some key combinations are software-backed — inconsistent across devices

© 2019 Synopsys, Inc. 23 S‘/"UPS‘/SG

Key Use Bound to Authentication Event

» Unlock key in AndroidKeyStore using fingerprint.

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES",

"AndroidKeyStore");

keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,
KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
.setBlockModes (KeyProperties.BLOCK MODE_GCM)
.setEncryptionPaddings(KeyProperties.ENCRYPTION PADDING_NONE)
.setUserAuthenticationRequired(true)
.setUserAuthenticationValidityDurationSeconds (60) ECE)\FZ Eg';ﬂgol\lfdgNLOCKED
.setUserAuthenticationValidiWhileOnBody(false %

DK >= 24

.setInvalidatedByBiometricEnrollment(true) //
.build());
SecretKey key = keyGenerator.generateKey(); NOT RECOMMENDED

© 2019 Synopsys, Inc. 24 S‘/"UPS‘/S®

“By default, if user authentication is required, it must take place for every use of the key. “
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationValidityDurationSeconds(int)

keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,
KeyProperties.PURPOSE ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
.setBlockModes (KeyProperties.BLOCK MODE_GCM)
.setEncryptionPaddings(KeyProperties.ENCRYPTION PADDING_NONE)
.setUserAuthenticationRequired(true) *
.setUserAuthenticationValidityDurationSeconds(60) **
.setUserAuthenticationValidWhileOnBody (false)

In reality ...

« “Requiring authentication” has no effect unless key duration is in [-1,0]
« Device just needs to be unlocked.

© 2019 Synopsys, Inc. 25 SV"UPS‘/SG

Attacker enrols new fingerprint, tries to authorises use of
the key

// SDK >= 24
KeyGenParameterSpec.Builder.setInvalidatedByBiometricEnrollment(true)

INVALIDATE KEY ON NEW ENROLLMENT

© 2019 Synopsys, Inc. 26 S‘/"[]PS‘/SG

What if the KeyGenerator specification is “bad”?

... then what should happen below?

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES",

"AndroidKeyStore");

keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,
KeyProperties.PURPOSE ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
.setBlockModes (KeyProperties.BLOCK MODE_GCM)
.setEncryptionPaddings(KeyProperties.ENCRYPTION PADDING_NONE)
.setUserAuthenticationRequired(true)
.setUserAuthenticationValidityDurationSeconds(60)
.setUserAuthenticationValidiWhileOnBody(false)
.setInvalidatedByBiometricEnrollment(true)

.build());

SecretKey key = keyGenerator.generateKey(); // ???

© 2019 Synopsys, Inc. 27

SYNOPSYS'

Documentation iIs silent

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setinvalidatedByBiometricEnrollment(

boolean)

© 2019 Synopsys, Inc.

setinvalidatedByBiometricEnrollment added in AP level 24

public KeyGenParameterSpec.Builder setInvalidatedByBiometricEnrollment (boolean invalidateKey)

Sets whether this key should be invalidated on fingerprint enrollment. This applies only to keys which require user
authentication (see setUserAuthenticationRequired(boolean)) and if no positive validity duration has been set (see
setUserAuthenticationValidityDurationSeconds(int) , meaning the key is valid for fingerprint authentication only.

By default, invalidateKey is true, so keys that are valid for fingerprint authentication only are irreversibly invalidated
when a new fingerprint is enrolled, or when all existing fingerprints are deleted. That may be changed by calling this
method with invalidateKey setto false.

Invalidating keys on enrollment of a new finger or unenrollment of all fingers improves security by ensuring that an
unauthorized person who obtains the password can't gain the use of fingerprint-authenticated keys by enrolling their own
finger. However, invalidating keys makes key-dependent operations impossible, requiring some fallback procedure to
authenticate the user and set up a new key.

28 SYNOPSYS

Fingerprint Spoofing

© 2019 Synopsys, Inc. 29 SV"UPS‘/SG

Fingerprint Spoofing

© 2019 Synopsys, Inc.

30

HACK/UNLOCK any finger PRINT phone security using glue!'MUST ...
https://www.youtube.com/watch?v=25 EGG2hsXU v

14 Oct 2016 - Uploaded by BOKIN DIY
In this tutorial,you will see how to copy/hack others fingerprint ans use it.Buy
hot glue gun http://amzn.to ...

FilegaPann SCaNE
\
S

» 3:05

How To Copy a Fingerprint Like a Spy - iPhone Touch ID Hack ...
https /Iwww.youtube.com/watch?v=bp-MrrAmprA v

Galaxy S5 Fingerprint Scanner Hacked With Glue Mould - YouTube
https://www.youtube.com/watch?v=JRTNmpEf6ss
2 19 Apr 2014 - Uploaded by Web Box Tech

Galaxy S5 Fingerprint Scanner Hacked With Glue Mould. ... Top 10 Reasons
Why You Should ROOT ANY ...

SYNOPSYS

11:58 G i &

Spoofing and the CDD _

®
* [SR] Are STRONGLY RECOMMENDED to have a Unlock with Pixel Imprint
spoof and imposter acceptance rate not higher Pixel Imprint uses your fingerprint to wake and
unlock your phone, authorize purchases, or sign
than 7% in to apps.
. . Be careful whose fingerprints you add. Any
¢ [C'1'4] MUST d|SC|Ose that th|S mOde may be fingerprints added will be able to do these
less secure than a strong PIN, ..., and clearly things.
enumerate the risks of enabling it, if the spoof Note: Your fingerprint may be less secure than a

strong pattern or PIN. Learn more

and imposter acceptance rates are higher than
7% (Introduced Android 8.1 CDD)

The Spoof Accept Rate (SAR) is the “chance that a
biometric model accepts a previously recorded, known =
good sample”. For fingerprint sensors, using a mould of @
an enrolled fingerprint to unlock a user's phone counts

as a spoof attack

© 2019 Synopsys, Inc. 31 < pa— S‘/"[]PS‘/SG

Grandma’s recipe

Step One: For the creation of moulds for
casting fingerprints a negative (-ve)
fingerprint impression is first taken in a
suitable moulding material such as
Sugru/Pratley Putty as outlined below:

1. Form a ball from mould material.
2. Press firmly onto to mould material.
3. Leave to cure until non-pliable.

© 2019 Synopsys, Inc. 32 S\/nUPS‘/SG

Steps two and three

Step Two: Create the cast material by heating gelatin
powder and water as shown below:

1. Add gelatin powder to water in a ratio approximately SE
between 0.8:1 and 1:1 volume parts of gelatin to water.
. Warm at low heat, stirring constantly.

2
3. Do not boill.
4. Remove from the heat and leave to cool.

Gelatine

gonutrition

Step Three:

1. Pre-conditions (a) the mould has set/hardened and (b)
the casting material is now viscous but cooled.
2. Pour the casting material into the mould and leave to

set.

33 SYNOPSYS

© 2019 Synopsys, Inc.

... GELATIN

SYNOPSYS
© 2019 Synopsys, Inc. 34 y y

A short spoofing video

© 2019 Synopsys, Inc. 35 S‘/"[]PS‘/SG

Logs can help identify good models

03-10 04:04:32.188 1202 1359 D fpc_tac : capture image start

03-10 04:04:32.330 1202 1359 D fpc_tac : capture image end

03-10 04:04:32.330 1202 1359 D fpc_fingerprint_hal: fpc_notificator: type 2

03-10 04:04:32.330 1202 1359 D fpc_hidl: onAcquired(code=6, vendor=1)

03-10 04:04:32.330 1202 1359 D libfingerprint_core: push_message: message passed

03-10 04:04:32.332 1921 1921 W FingerprintManager: Invalid acquired message: 6, 1

03-10 04:04:32.344 1202 1359 D fpc_tac : IDD_identify_stat KPI Capture time: 0 ms Identify time: 13
ms

03-10 04:04:32.350 1202 1359 D fpc_tac : IDD _identify_stat: hwid 0x711 res: 1 cov: 93, qual: 33,
covered zones: 4095, score: 93, idx: 0

03-10 04:04:32.352 1202 1359 D fpc_fingerprint_hal: fpc_notificator: type 2

03-10 04:04:32.352 1202 1359 D fpc_hidl: onAcquired(code=0, vendor=0)

03-10 04:04:32.352 1202 1359 D libfingerprint_core: push_message: message passed

03-10 04:04:32.355 1202 1359 D fpc_fingerprint_hal: fpc_notificator: type 1

03-10 04:04:32.355 1202 1359 D libfingerprint_core: task_set_tryagain: task 'authenticate' restart = 0
03-10 04:04:32.355 1202 1359 D fpc_hidl: onAuthenticated(fid=-1435385119, gid=0)

[C-1-9] MUST NOT enable 3rd-party applications to distinguish between individual fingerprints.

© 2019 Synopsys, Inc. 36 SynUPSyS

[System -> Kernel] -> [TEE]

A journey from normal world to secure world

© 2019 Synopsys, Inc. 37 SV"UPS‘/SG

fingerprintd

https://android.googlesource.com/platform/system/core/+/nougat-release/fingerprintd/fingerprintd.cpp

int main() {
ALOGI("Starting " LOG_TAG); _
android: :sp<android: :IServiceManager> serviceManager = . Export a binder

android: :defaultServiceManager(); 2. Load HAL implementation
android: :sp<android: :FingerprintDaemonProxy> proxy = 3. Proxy binder calls via in-

android: :FingerprintDaemonProxy: :getInstance(); process proxy to HAL
android: :status_t ret = serviceManager->addService(implementation

android: :FingerprintDaemonProxy: :descriptor, proxy);

/>I<
* We're the only thread in existence, so we're just going to process
* Binder transaction as a single-threaded program.
*/
android: :IPCThreadState: :self()->joinThreadPool();
ALOGI("Done");
return 9;

© 2019 Synopsys, Inc. 38 S‘/"[]PS‘/SG

HAL implementation

1. Implements the functions in libhardware/include/hardware/fingerprint.n
2. Communicate with the device specific hardware
3. Is closed source

... but we can reverse it and identify HAL functionality, trustlet command ids, and extended functionality

~inte4 fastcall BAuth Enroll Init(int *al, int64 a2, unsigned int a3, int a4,
_DWORD *a5, int a6, _ int64 a7)

{

__android _log print(3LL, "bauth _TLC Communicator", "Call FP cmd ©x%x", 2LL);

if (!'gVFMQSEEHandle)
D bauth FPBAuthService: fpop : 100023

{ D fingerprintd: onAcquired(10004)
c e D bauth TLC Communicator: Call FP cmd ©x2
v19 = QSEECom_send cmd(*(QWORD *) D bauth_TLC_Communicator: Check the Trustlet return code is
gVFMQSEEHandle, v15, 384LL, v16, 64LL); completed ,
D bauth FPBAuthService: check opcode status = 1, opcode = 0,

func_ret _val = @, function status = 0, timeout = ©

... and correlate the command ids with the trustlet D bauth_FPBAuthService: FPBAuthService, 1032

and logs
Synapsys

© 2019 Synopsys, Inc. 39

Application

1 Requests authentication of CryptoObject—> Fmgerprthanager
y\ App Vendor | Google
Abstraction glue N O r aI - O r I d E E
: m W |

FingerprintService CO m m u n I C a'“ O n

Makes callbacks

Java
W NN N N NN NN NN NN NN NN NN NN NN NN NN BN NN BN NN BN BN BN AN anagesclientqueues; ----- - "
Native Handles events for L I b rary

=

TEE Communication Sends fingl#print Fingerprint HAL Fingerprintd
— <€ Delegates to—
Library commﬁ pecestest Googl
oogle
User-space shared object

Kernel
Makes I0CTL calls——», | £C communication Driver 2. Closed-source, developed by

Kernel SoC vendor
Makes SMC call
Smmmmmmmmmmmsssssmmmmmm————— Switches CPU to Monftor Mode — " @@ T T T T TS S S S s s s s s s ————— = 3. Abstracts IOCTL commands
TrustZone Kernel v) .
e — ER over kernel virtual device
Sensor Vendor
TrustZone Kernel
W N O O O, A O O, O, O O, O O, O Forwards SMC call to handlers = = m m m m m m = - o - -
TrustZone
Finger;)rint Trustlet Uses SPI
rocess
TrustZone
Physical FP Sensor |
© 2019 Synopsys, Inc. 40 SV"UPS‘/SG

Native

Application

A App Vendor

Requests authentication of CryptoObject—

FingerprintManager

Google

e Kernel TEE

TEE Communication
Libra ry commands

Makes callbacks

FingerprintService

- &m communication module

Handles events for

Sends fingerprint__| Fmgerprmt HAL hpebgatesto—

Fingerprintd
Google

1. Protected kernel virtual device
2. Switches to secure world using Secure
Monitor Call

/dev/gsee, /dev/imobicore, /dev/tc_ns_client

Native
Kernel
Makes 10CTL calls > TEE Communication Driver

Kernel I

s —— S S e e o o o o o o o o = o o o o o o o o -
Switches CPU to Monitor Mode
TrustZone Kernel
TEE Kernel _ Sensor Driver
Sensor Vendor

TrustZone Kernel
L R N P N R N R R R RN Forwards SMC ca" to hand|er- ----------------------------------- -

TrustZone

Fingerprint Trustlet Use SPI
——
Process
TrustZone
Physical
Y FP Sensor |
© 2019 Synopsys, Inc. 41

SYNOPSYS:

A very short detour on some aspects of TrustZone and
TEES

E Normal World : E Secure World :
E Applications | | E :
: Requiring | ;! gg gg gg :
' Secure OS | ' 2 L. kY ;
' Open S | F = - :
. | Applications a8 : E 3 § § :

TrustZone API | e 58 :
. TZ Driver | ! . :
‘| Embedded OS 't Monitor
' -; ' '

Cortex-A / ARM1176 Processor with ARM TrustZone Technology

=

Secure Element
(SecurCore)

© 2019 Synopsys, Inc. 42 S‘/"UPS‘/S®

Exception Levels

3.2.2 Exception levels
The Armv8 exception model defines exception levels ELO-EL3, where:

« EL3 provides support for a Secure state, see 3.2.3 Security state.

Typical exception level usage model

« ELO Applications.

« EL1 OS kernel and associated functions that are typically described as
privileged.

 EL2 Hypervisor.

« EL3 Secure monitor.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDDAHFB.html, A73, e.g. A8+

© 2019 Synopsys, Inc. 43 SynUPSyS

http://infocenter.arm.com/help/topic/com.arm.doc.100048_0100_06_en/jfa1406793214854.html

Security state

3.2.3 Security state

Secure state
In Secure state, the processor:

« Can access both the Secure memory address space and the Non-secure
memory address space.
* When executing at EL3, can access all the system control resources.

Non-secure state
In Non-secure state, the processor:

« Can access only the Non-secure memory address space.
« Cannot access the Secure system control resources.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDDAHFB.html, A73, e.g. A8+
© 2019 Synopsys, Inc. 44 S‘/"UPS‘/SQ

Trust Is inherently asymmetrical

In Secure state, the processor:
Trustlets can access normal-world

« Can access both the Secure memory address memory
space and the Non-secure memory address
Space. » Dubbed “boomerang attack”, Aravind Machiry
et al.

* QSEE privilege escalation vulnerability and
exploit (CVE-2015-6639, Gal Beniami)

« Userland -> system service (media server) ->
... -> QSEE (Widevine trustlet) -> Linux kernel

Shared Nwd and Swd buffers are allocated in Nwd and the (physical) address is mapped into a
trustlet virtual address by TEE OS system call from within the trustlet.

45 SYNOPSYS

© 2019 Synopsys, Inc.

static noinline int smc_send(uint32_t cmd, phys addr_t cmd_addr,

uint32 t cmd _type, uint8 t wait)

{
/*tlogd("start to send smc to secure\n");*/
ESEE(:LIrEE register u64 x0 asm("x0") = cmd;
" register u64 x1 asm("x1") = cmd_addr;
I\AC)r]It()r register u64 x2 asm("x2") = cmd_type;
Ca” register u64 x3 asm("x3") = cmd_addr >> 32;
: : do {
InStI’UCtIOH asm volatile(
_asmeq(ll%@ll) "X@")
from NWd __asmeq("%1", "x0") : . :
k | asmeq("%2", "x1") kernel/drivers/hisi/tzdriver/smc.c
erne asmeq("%3", "x2") Huawei Mate 10 (Kirin 970)
__asmeq("%4", "x3")
"smc #o\n"
Transfer control to TEE kernel : "+r" (x0)
"P" (X@), llr‘ll (Xl)) llr‘ll (Xz)) llr‘ll (XB));
} while (x© == TSP_REQUEST && wait);
return x0;
}
© 2019 Synopsys, Inc. 46

SYNOPSYS

AXPROT signal

Allows TEE to assert that the
signal originated from code
that is

* Privileged (as opposed to
normal)

« Secure world (as opposed to
non-secure world)

© 2019 Synopsys, Inc. 47

Library

Kernel

TEE Communication 3m;5r:$:;rint Fingerprint HAL Delegatesto Fingerprintd

Makes |1OCTL calls——

TEE Communication Driver l
|

TrustZone Kernel

TrustZone Kernel

Makes SMC call

Switthes CPU o Monitor Mode

TEE Kernel Sensor Driver

h J

............................. Forwards SMC Gl 1o handlors m e o o) o - 5 5" -

TrustZone

TrustZone

Fingerprint Trustlet [€————V Pl
Process Did this come from
secure world?

Physical

SYNOPSYS

FI n g e r p r I n t Tr u S t ed Application ' Requests authentication of CryptoObject— FingerprintManager

Application
\ 4

FingerprintService

Makes callbacks

Manages client queues;

Native Handles events for

TEE Communication Sends fingerprint__| Fingerprint HAL Delegates to—l Fingerprintd
Libra ry commands
i Google

« Swd counterpart of HAL

« Registers handler for SMC calls Matve i
« Event handler entry point Kernel
* |nitialize the hardware driver Miakes I0CTL calls—»1EE Communication Driver
» Perform scan Kernel 1
. Cre.ate template TrustZone Kernel Switches CPUtiMonitorMode
» Verify a reading from sensor TEE Kernel . Sensor Driver
TrustZone Kernel i
u
O, P P P N, P P, N, P P, O P, P, P P, O P O P O, M, O, M, ¢ Forwards SMC call to handlers = = m m m m m m o = === - - -
TrustZone v
Fingerprint Trustlet < se SPI
P
rocess
TrustZone
Physical FP Sensor p

© 2019 Synopsys, Inc. 48 S‘/"UPS‘/SG

Exploring the system

© 2019 Synopsys , Inc. 4 9 SynUPSyS

What could go wrong?

© 2019 Synopsys, Inc. 50 SV"UPS‘/SG

Testing a device

1. Build a reference fingerprint system threat model.
Revise and adapt the model(s) for different implementations.

2. Evaluate a device by verifying that the observed controls, e.g. fingerprint template
protection, adhere to the reference threat model.

Is the device under test a “valid” implementation of the model?

Looking for evidence of doing stupid things.
Not vulnerability hunting!
Will miss hard to find issues and hard to test issues

© 2019 Synopsys, Inc. 51 S‘/"UPS‘/S

Reference model(s)

Compatibility Definition

el

ooy ||

Cp-

Android 9

IDA View-A PSEUdDCDdE'A @ IE Local Types @ Hex View-1 @ Structures

15 = a5;

_ android_log print(3LL, "QSEECOMAPI", "QSEECom_get_handle sb_length = @x¥x\n", a7);
if ¢ 1Tz)

{

“ymalloc (Bx28ull);

18;

= "Error::malloc failed. Could not allocate memory'

goto LABEL_3;

15 + 4) = oLL;

= Bu;

+ 1) = Bu;

+28) = -1LL;

_ ("/dev/gseecom™, 2LL);
ORD *)v19 + 4) = v20;

v26 & Bx30000000)

__andreid_log print(6LL, "Q5

17 = -1;
22 = *((_DWORD *Jv1d + 4);
i (122

goto LABEL_41;
goto LABEL_48;

(v2e, exCee497@AuLL, &vso);

© 2019 Synopsys, Inc.

52

rror::Failed to open /dev/qseecom device\n");

=

Enur

‘ [

] ‘ ‘ [Jawist] ‘

e

‘ Periphersl Device

e

T

Bits, Please!

04/08/2015

Exploring Qualcomm'’s TrustZone implementation

In this blog post, we'll be exploring Qualcomm'’s TrustZone implementation, as present on Snapdragon SoCs. If you haven't already, you might
want to read the previous blog post, in which | go into some detail about TrustZone in general.

Where do we start?

First of all, since Qualcomm's TrustZone implementation is closed-source, and as far as | could tell, there are no public documents detailing its
architecture or design, we will probably need to reverse-engineer the binary containing the TrustZone code, and analyse it.

Acquiring the TrustZone image

We can attempt to extract the image from two different locations; either from the device itself, or from a factory image of the device.

My personal Nexus 5 device was already rooted, so extracting the image from the device should be pretty straight forward. Since the image is
stored on the eMMC chip, and the blocks and partitions of the eMMC chip are available under "/dev/block/platform/msm_sdcc.1", | could simply

copy the relevant partition to my desktop (using "dd").

Moreover, the partitions have meaningfully named links to them under "/dev/block/platform/msm_sdcc.1/by-name"

1] rootghammer

Lrwxr:
Lrwxrwxrwx

SYNOPSYS'

Threat model

« Example malicious actors:
* Privileged malware
* Malicious vendor or careless vendor

» Physical attacker (with access to
fingerprint models)

* Rogue trustlet

« Example controls:

 Trusted applications are signed

» Template operations inside TEE

» Templates are cryptographically authenticated

 Device specific hardware key

* Virtual device Linux file permissions, SELinux permissions set
appropriately

© 2019 Synopsys, Inc. 53 S‘/"UPS‘/S

What could go wrong?

Many mistakes possible:

Weak device configuration
Sensor accessible from Nwd
Vulnerabilities in TEEOS

Vulnerabilities in trusted application
Template operations in Nwd
Backdoors

Template data outside the TEE
Template data usable on another device
Scan data outside the TEE
Template data not authenticated
Trusted application not signed
Downgrade attack

Fingerprint spoofing

Application errors

© 2019 Synopsys, Inc. 54

\ 4

Qualcomm closed-source components

These vulnerabilities affect Qualcomm components and are described in further detail in the appropriate Qualcomm

security bulletin or security alert. The severity assessment of these issues is provided directly by Qualcomm.

CVE

CVE-2018-11289

CVE-2018-11820

CVE-2018-11938

CVE-2018-11945

CVE-2018-11268

CVE-2018-11845

CVE-2018-11864

CVE-2018-11921

CVE-2018-11931

CVE-2018-11932

CVE-2018-11935

CVE-2018-11948

CVE-2018-5839

CVE-2018-13904

References

A-109678453*

A-111089815*

A-112279482%

A-112278875*

A-109678259*

A-111088838*

A-111092944*

A-112278972%

A-112279521F

A-112279426%

A-112279483*

A-112279144*

A-112279544%

A-119050566*

Type

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Severity

Critical
Critical
Critical
Critical
High
High
High
High
High
High
High
High
High

High

Component

Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component
Closed-source component

Closed-source component

SYNOPSYS'

Access the sensor directly from normal
world

https://source.android.com/security/authentication/fingerprint-hal

Implementation guidelines

The following Fingerprint HAL guidelines are designed to ensure that fingerprint data is not
leaked and is removed when a user is removed from a device;:

1. Raw fingerprint data or derivatives (e.g. templates) must never be accessible from outside

the sensor driver or TEE. If the hardware supports it, hardware access must be limited to

the TEE and protected by an SELinux policy. The Serial Peripheral Interface (SPI) channel
must be accessible only to the TEE and there must be an explicit SELinux policy on all
device files.

© 2019 Synopsys, Inc. 55 S\/nUPS‘/SG

AX P ROT S | g n al Native (System) Fingerprintu

! Delegatest
SU p p 0S ed tO C h ec ked by TEE CoITbrTrmaurr;ication Senccf,r:;iirgsrint_ Fingerprint HAL \ -

fingerprint sensor

» Blackhat USA 15: Fingerprints On
Mobile Devices, Tao Wel and el
Yulong Zhang Makes 10CTL calls TEE Communication Driver SPI Sensor Driver

« HTC One Max and Samsung Kernel I:MJI
Galaxy 85 mEmEmmmmmEmmmmmmmmmmmmEnnEnE Switchelw(?ll(sstg\l/\llliﬁ?ttrMode --------------------------------- e

TrustZone Kernel

o Still happens tOday’) TEE Kernel _ SPISensor Driver

1)

\ 4

Sensor Vendor
TrustZone Kernel

- Forwards SMC call to handlers = m m m m m m m m m =) - -

TrustZone

Fingerprint Trustlet

<—USES
Process <P
TrustZone
--P-r:----l -- ;' --------------- - . .-
ysica FP Sensor |

© 2019 Synopsys, Inc. 56 S‘/"UPS‘/SG

D| ff| Cu I t tO te St Nokia 8 Sirocco kernel source code &

now available

2% Richard Gao w1 | 1o

S | i Jan 16, 2019 Total Shares 27
S NOKIA NOKIA 8 SIROCCO ROMS & MODDING

Source code may be
released months later

Hot on the heels of the Android Pie update from earlier this month, HMD Global has released the

kernel source code for the Nokia 8 Sirocco. Of course, most people won't be able to do much with

N Okla 8 release date mld 2018 this, though it might be good news for the few who've unlocked their bootloaders (yes, it's possible).

Disclaimer: not suggesting **this** device vulnerable
© 2019 Synopsys, Inc. 57 S\/nUPS‘/SG

Access the kernel device from unprivileged
process?

https://source.android.com/security/authentication/fingerprint-hal
Implementation guidelines
1. ... and there must be an explicit SELinux policy on all device files.

We found explicit SELinux policy on all devices though some have weak Linux file permissions

judyln:/system $ 1ls -1Z /dev/goodix_ fp
CPrW-rw-rw- 1 root u:object r:goodixfingerprintd device:s@ 225, 0 2017-
03-26 23:36 /dev/goodix_ fp

58 SYNOPSYS

© 2019 Synopsys, Inc.

Trustlet signing

* Qualcomm & Mobicore/Trustonic trustlets are signed
« Huawei trustlets are encrypted — could not verify

Encrypted trustlets on Huawei P10 VTR-ALOO device

© 2019 Synopsys, Inc. 59 S‘/"UPS‘/SG

Signature chain sometimes expired

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
d3:1e:82:f8:95:df:a8:c0
Signature Algorithm: rsassaPss
Hash Algorithm: sha256
Mask Algorithm: mgf1i with sha256
salt Length: 0x20
Trailer Field: 8xBC (default)
Issuer: C = KR, ST = South Korea, L = Suwon City, 0 = Samsung Corporation, OU = DMC, CN = Sams
= = m 2 : : - com

validity
Not Before: Sep 18 08:27:36 2018 GMT
Mot After : Oct 18 @8:27:36 2018 GMT
Setaianiieg : S - o swweh City, 0 = Samsung Corporation, OU = DMC, CN = Sam
sung Root CA cert, emailAddress = m.security@samsung.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:
00:ba:6e:65:01:31:07:22:95:85:e6:7d:38:47:ef:
cb:12:50:2a:23:24:92:f9:¢5:¢9:9f:58:99:2f:71:
b8:03:75:00:76:1a:0c:dd:9a:34:b6:a7:8c:86:02:
9@:ba:6d:ff:9b:4f:cc:ae:67:3f:0b:2d:54:7f:90:
78:1e:bc:35:f8:8b:36:4c:9a:78:72:17:b6:d7:44:
dl1:f@:5f:c@:¢c9:c5:32:34:6b:2f:17:d4:56:26:b4:
6d:91:ea:12:d2:e6:77:4c:04:2f:70:35:59:4b:f6:
72:86:c0:00:a4:55:e2:18:11:64:f8:af:cc:48:2b:
ea:43:b2:c2:f9:b6:87:98:ae:c2:1e:e4:f2:ec:85: S‘/"UPS‘/SG

© 2019 Synopsys, Inc.
Sa:ac:9d:c7:Ta:3e:29:ed:68:95:T2:ee:0b:19:1e:

Chain of trust

Set security questions

[C-1-8] First establish chain of trust (PIN/pattern/password)

What was the name of your primary
school?

All devices enforced this ...

What was the name of your best
friend in childhood?

..., however, weak stock questions allow PIN reset

© 2019 Synopsys, Inc. 61 Syn[]PSySe

Fingerprint spoofing

[C-1-5] MUST rate limit attempts for at least 30 seconds after five false trials for
fingerprint verification.

All devices locked the screen after five attempts

... but then some continued to process fingerprint attempts

... and logged the result along with quality metrics

© 2019 Synopsys, Inc. 62 S‘/"UPS‘/SQ

Attack: copy fingerprint template from
another device

Implementation guidelines:
“Fingerprint templates must be signed with a private, device-specific key.”

© 2019 Synopsys , Inc. 6 3 S‘/"UPS‘/S

Defense: derive a device specific key

__int64 _ cdecl fp_get uniquekey()

{
int(*ve@)(int, const char *, const char *, ...); // x19
unsigned int v1; // wo
__int64(*v2)(__int64, const char *, ...); // X3
vl = g pLogFunction;
(*g _pLogFunction)(8LL, "%s Init", qword 6A3320);
(*vO) (8LL, "fp get uniquekey start");
vl = gqsee kdf(@, 32, aSamsungSecurit, 32, aFpDeviceKey, 32, g UniqueKey, 64);
v2 = *vO;
if (!vl)
return v2(8LL, "fp get uniquekey success end");
v2(8LL, "qgsee kdf error rv = %d", vl);
return (*vO@)(8LL, "get uniquekey failed");
}

Template wrapping (encrypt and HMAC) is done in the trustlet

64 SYNOPSYS

© 2019 Synopsys, Inc.

Attack: exploit vulnerabilities In trusted
application

Written in C
Buffer overflows, integer wrapping, out of secure world writes

Complex command/template parsing logic
Compile-time hardening (e.g. stack protector) mostly absent

© 2019 Synopsys, Inc. 65 S‘/"UPS‘/S

Demo

© 2019 Synopsys, Inc. 66 S‘/"[]PS‘/S@

What'’s next?

Incremental improvements

© 2019 Synopsys, Inc. 67 SynUPSyS

Improved Isolation

 Trustzone:

* The two worlds share the same hardware: isolation achieved through the use
of CPU registers and a non-secure (NS) bit.

* Separate processor on same SoC:

« Qualcomm Snapdragon SDM845 and SDM855 Secure Unit Processor
—Closer parity with Apple’s Secure Enclave

» Other vendors to follow suit?
—E.qg. google bought HTC Mobile

« Addresses the issue that TrustZone applications now form a large TCB
* Doesn’t solve many of the other design properties (nor does it claim to)

© 2019 Synopsys, Inc. 68 S‘/"UPS‘/S

Key attestation

« Attest that key is stored in a device's hardware-backed keystore.
* Relying party checks certificate chain signed by “Google attestation root key”

* Very small step closer to “evidence” for a second factor
« Keymaster 3:

enum class HardwareAuthenticatorType : uint32_t

{
NONE = Qu, // ©
PASSWORD = 1 << O,
FINGERPRINT = 1 << 1,
ANY = UINT32 MAX,

s

https://source.android.com/security/keystore/tags#user_auth_type
https://developer.android.com/training/articles/security-key-attestation

© 2019 Synopsys, Inc. 69 S‘/"[]PS‘/S@

Key takeaways

* There isn’t a single “Android” fingerprint system

— Vendors have considerable flexibility to implement subject to CDD and guidance
constraints

* Plenty of opportunities to make mistakes:
—Nwd Apps
—Nwd and Swd fingerprint components

* TEE Is a high-value target:

—Image and template processing involves plenty of complex logic: bugs highly likely
—Lack of defensive measures such as stack canaries being used

« TEE TCB Is becoming large.
—E.qg. rogue/vulnerable trusted application could derive template key

© 2019 Synopsys, Inc. 70 S‘/"UPS‘/S

A parting question

Can the fingerprint design on Android somehow be
used to support two-factor auth?

Thank youl!

© 2019 Synopsys, Inc. 71 S‘/"UPS‘/S

S\/I'I[]PS\/S

n to Softwa

