
© 2019 Synopsys, Inc. 1

The Android fingerprint system
Andrew Lee-Thorp

Synopsys Software Integrity Group

© 2019 Synopsys, Inc. 2

About Me

Andrew Lee-Thorp

@Synopsys Software Integrity Group (from Coverity,

Codenomicon and others + Cigital)

Android assessments, tool development, system design and

development, code review, cutting code, threat modelling

> 10 yrs cutting code, nearly 10 yrs in security

© 2019 Synopsys, Inc. 3

Why this talk?

© 2019 Synopsys, Inc. 4

Agenda

• Introduction

• Framework APIs and the developer perspective

• Fingerprint for local authentication

• Using fingerprint to unlock hardware-backed keys

• Fingerprint spoofing

• A journey from normal world to secure world and a short detour into TrustZone

• What can go wrong?

© 2019 Synopsys, Inc. 5

Fingerprint HAL and requirements introduced in

Marshmallow (6.0)

Figures on 26 October, 2018

> 70% on Android 6.0 or later

© 2019 Synopsys, Inc. 6

Benefits

• Streamlined user authentication

– Performance and usability benefit

– “Single sign-on”

• Previously: “alignment” with iPhone, iPad

© 2019 Synopsys, Inc. 7

Stakeholders and entities

• End users: am I secure?

• Organisations, e.g. banks: will I put my users at risk?

– Corollary: will I suffer any reputational damage?

– How does fingerprint compare to PIN?

– How does did it compare to touchid (iOS)?

– Is fingerprint as a second factor?

• Security researchers:

– How can I attack the system?

• Device manufacturer, e.g. Samsung, Sony

• System-on-chip vendor, e.g. Qualcomm, HiSilicon, MediaTek

• Fingerprint sensor vendor, e.g. FPC, Synaptics, Goodix

• Google & AOSP

© 2019 Synopsys, Inc. 8

Risks

• Physical

– Fingerprint Forgery (aka spoofing)

• Application risks

– Misuse of the APIs

• Multiple technical risks due to the implementation

– Multiple critical hw and sw components are involved, each provided by different 3rd party (vendor)

– 3rd Party ==> proprietary, non-standard, unknown

– Any one component failure “could” compromise the overall security

– Built on TrustZone

• Disclosure of fingerprint material (image) or derived material (template)

– Bugs

– Backdoors

• Bypass Fingerprint Authentication

– Trick the app

– Trick the system

– Trick the user (“clickjacking” / confused deputy attack)

© 2019 Synopsys, Inc. 9

Android Compatibility Definition Document

Enumerates the requirements that must be met

[C-1-5] MUST rate limit attempts for at least 30 seconds after five false trials

7.3.10.1. Fingerprint Sensors

[SR] STRONGLY RECOMMENDED that spoof and imposter acceptance rate not > 7%.

[C-1-8] MUST first establish a chain of trust by first establishing PIN/pattern/password

that's secured by TEE.

[C-1-2] MUST fully implement the corresponding API as described in the Android SDK

documentation.

© 2019 Synopsys, Inc. 10

System

Architecture

Application FingerprintManager

Fingerprintd

FingerprintService

FP Sensor

Java

Fingerprint HAL

Native

Kernel

Native

Kernel

TrustZone Kernel

TrustZone

Physical

Sensor Driver

Fingerprint Trustlet
Process

Requests authentication of CryptoObject

Abstraction glue

Manages client queues;
Handles events for

Delegates to

Makes callbacks

TEE Communication Driver

TrustZone Kernel

TrustZone

TEE Kernel

Forwards SMC call to handler

TEE Communication
Library

Sends fingerprint
commands

Makes IOCTL calls

Makes SMC call
Switches CPU to Monitor Mode

Google

Google

GoogleHW VendorHW Vendor

App Vendor

HW Vendor

HW Vendor

HW Vendor

Sensor Vendor

Sensor Vendor

SPI
Uses

“Secure” world

(Trusted / Swd)

“Normal” world

(REE / Nwd)

© 2019 Synopsys, Inc. 12

Framework support

© 2019 Synopsys, Inc. 13

<uses-permission android:name="android.permission.USE_FINGERPRINT" />

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
enabledFingerprints = true;

}

FingerprintManager.isHardwareDetected()

KeyguardManager.isDeviceSecure()

FingerprintManager.hasEnrolledFingerprints()

FingerprintManager.authenticate(cryptObject, cancellationSignal, flags,
callback, handler)

Step 1: check for hardware support and device security

enabled

Step 2: request authentication, provide callback

© 2019 Synopsys, Inc. 14

public class MyCallback extends FingerprintManager.AuthenticationCallback {

@Override
public void onAuthenticationError(…) {
}

@Override public void onAuthenticationHelp(…){
}

@Override public void onAuthenticationFailed() {
}

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// result contains the cryptObject

Step 3: Handle result

© 2019 Synopsys, Inc. 15

BiometricPrompt (Android Pie)

Standardises the UI, changes the flow

@Override
public void onAuthenticationError(…) {
}

BIOMETRIC_ERROR_NO_BIOMETRICS - no fingerprint (biometric) enrolled.

BIOMETRIC_ERROR_HW_NOT_PRESENT -  fingerprint (biometric) sensor not present

BIOMETRIC_ERROR_HW_UNAVAILABLE

<uses-feature
android:name="android.hardware.fingerprint" android:required="true" />

Google play store feature (unrelated to Biometric Prompt)

© 2019 Synopsys, Inc. 16

API details are hidden in the fine print

if (!keyguardManager.isKeyguardSecure()) {
// Show a message that the user hasn't set up a fingerprint or

lock screen.
Toast.makeText(this,

"Secure lock screen hasn't set up.\n"
+ "Go to 'Settings -> Security -> Fingerprint' to

set up a fingerprint",
Toast.LENGTH_LONG).show();

purchaseButton.setEnabled(false);
purchaseButtonNotInvalidated.setEnabled(false);
return;

}

https://github.com/googlesamples/android-FingerprintDialog

Do not use isKeyguardSecure.

© 2019 Synopsys, Inc. 17

API details are in the fine print

7

© 2019 Synopsys, Inc. 18

3. Authentication flow options

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// ignore cryptObject
authenticationSucceeded = true;

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// use the cryptoObject to sign server challenge
// really remote authentication
trySignChallenge(result.getCryptoObject().getCipher(), challenge);

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// use the cryptoObject on locally encrypted data (e.g. shared prefs)
tryDecrypt(result.getCryptoObject().getCipher());

1

2

3

© 2019 Synopsys, Inc. 19

Local authentication

App “authenticates” user using device credentials – fingerprint, PIN, …

© 2019 Synopsys, Inc. 20

Bypassing local authentication

Local authentication is using fingerprint verification to authorize an action locally

public class FingerprintUiHelper extends
FingerprintManager.AuthenticationCallback {

@Override public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

// result contains the cryptObject

Poor integration of the authentication flow can be bypassed by privileged attacker.

© 2019 Synopsys, Inc. 21

Attacking local authentication

https://github.com/googlesamples/android-FingerprintDialog and frida

https://github.com/googlesamples/android-FingerprintDialog

© 2019 Synopsys, Inc. 22

Fingerprints and the Keystore

© 2019 Synopsys, Inc. 23

TEE Backed Keystore

Conformant fingerprint implementations, for devices released with Android 6.0 or later, must

make use of a hardware-backed keystore (i.e. keystore backed by a TEE).

SecretKey sk = keyGenerator.generateKey();

SecretKeyFactory factory =

SecretKeyFactory.getInstance(sk.getAlgorithm(), "AndroidKeyStore");

KeyInfo keyInfo = (KeyInfo) factory.getKeySpec(sk, KeyInfo.class);
if (keyInfo.isInsideSecureHardware()) {

enabledFingerprints = true;
}

Key material + operations stay inside secure hardware

We found that some key combinations are software-backed – inconsistent across devices

© 2019 Synopsys, Inc. 24

Key Use Bound to Authentication Event

• Unlock key in AndroidKeyStore using fingerprint.

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES",
"AndroidKeyStore");
keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,

KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
.setBlockModes(KeyProperties.BLOCK_MODE_GCM)
.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)
.setUserAuthenticationRequired(true)
.setUserAuthenticationValidityDurationSeconds(60)
.setUserAuthenticationValidWhileOnBody(false)
.setInvalidatedByBiometricEnrollment(true) // SDK >= 24

.build());
SecretKey key = keyGenerator.generateKey();

7 KEY REMAINS UNLOCKED

FOR 60 seconds

NOT RECOMMENDED

© 2019 Synopsys, Inc. 25

In reality …

“By default, if user authentication is required, it must take place for every use of the key. “

keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,
KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)

.setBlockModes(KeyProperties.BLOCK_MODE_GCM)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)

.setUserAuthenticationRequired(true) *

.setUserAuthenticationValidityDurationSeconds(60) **

.setUserAuthenticationValidWhileOnBody(false)

• “Requiring authentication” has no effect unless key duration is in [-1,0]

• Device just needs to be unlocked.

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationValidityDurationSeconds(int)

© 2019 Synopsys, Inc. 26

Attacker enrols new fingerprint, tries to authorises use of

the key

// SDK >= 24
KeyGenParameterSpec.Builder.setInvalidatedByBiometricEnrollment(true)

INVALIDATE KEY ON NEW ENROLLMENT

© 2019 Synopsys, Inc. 27

What if the KeyGenerator specification is “bad”?

… then what should happen below?

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES",
"AndroidKeyStore");
keyGenerator.init(new KeyGenParameterSpec.Builder(keyAlias,

KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
.setBlockModes(KeyProperties.BLOCK_MODE_GCM)
.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)
.setUserAuthenticationRequired(true)
.setUserAuthenticationValidityDurationSeconds(60)
.setUserAuthenticationValidWhileOnBody(false)
.setInvalidatedByBiometricEnrollment(true)

.build());
SecretKey key = keyGenerator.generateKey(); // ???

© 2019 Synopsys, Inc. 28

Documentation is silent

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setInvalidatedByBiometricEnrollment(
boolean)

© 2019 Synopsys, Inc. 29

Fingerprint Spoofing

© 2019 Synopsys, Inc. 30

Fingerprint Spoofing

© 2019 Synopsys, Inc. 31

Spoofing and the CDD

• [C-1-4] MUST disclose that this mode may be

less secure than a strong PIN, …, and clearly

enumerate the risks of enabling it, if the spoof

and imposter acceptance rates are higher than

7% (Introduced Android 8.1 CDD)

The Spoof Accept Rate (SAR) is the “chance that a

biometric model accepts a previously recorded, known

good sample”. For fingerprint sensors, using a mould of

an enrolled fingerprint to unlock a user's phone counts

as a spoof attack

• [SR] Are STRONGLY RECOMMENDED to have a
spoof and imposter acceptance rate not higher
than 7%

© 2019 Synopsys, Inc. 32

Grandma’s recipe

Step One: For the creation of moulds for

casting fingerprints a negative (-ve)

fingerprint impression is first taken in a

suitable moulding material such as

Sugru/Pratley Putty as outlined below:

1. Form a ball from mould material.

2. Press firmly onto to mould material.

3. Leave to cure until non-pliable.

© 2019 Synopsys, Inc. 33

Steps two and three

Step Two: Create the cast material by heating gelatin

powder and water as shown below:

1. Add gelatin powder to water in a ratio approximately

between 0.8:1 and 1:1 volume parts of gelatin to water.

2. Warm at low heat, stirring constantly.

3. Do not boil.

4. Remove from the heat and leave to cool.

Step Three:

1. Pre-conditions (a) the mould has set/hardened and (b)

the casting material is now viscous but cooled.

2. Pour the casting material into the mould and leave to

set.

© 2019 Synopsys, Inc. 34

© 2019 Synopsys, Inc. 35

A short spoofing video

© 2019 Synopsys, Inc. 36

03-10 04:04:32.188 1202 1359 D fpc_tac : capture image start

03-10 04:04:32.330 1202 1359 D fpc_tac : capture image end

03-10 04:04:32.330 1202 1359 D fpc_fingerprint_hal: fpc_notificator: type 2

03-10 04:04:32.330 1202 1359 D fpc_hidl: onAcquired(code=6, vendor=1)

03-10 04:04:32.330 1202 1359 D libfingerprint_core: _push_message: message passed

03-10 04:04:32.332 1921 1921 W FingerprintManager: Invalid acquired message: 6, 1

03-10 04:04:32.344 1202 1359 D fpc_tac : IDD_identify_stat KPI Capture time: 0 ms Identify time: 13

ms

03-10 04:04:32.350 1202 1359 D fpc_tac : IDD_identify_stat: hwid 0x711 res: 1 cov: 93, qual: 33,

covered zones: 4095, score: 93, idx: 0

03-10 04:04:32.352 1202 1359 D fpc_fingerprint_hal: fpc_notificator: type 2

03-10 04:04:32.352 1202 1359 D fpc_hidl: onAcquired(code=0, vendor=0)

03-10 04:04:32.352 1202 1359 D libfingerprint_core: _push_message: message passed

03-10 04:04:32.355 1202 1359 D fpc_fingerprint_hal: fpc_notificator: type 1

03-10 04:04:32.355 1202 1359 D libfingerprint_core: task_set_tryagain: task 'authenticate' restart = 0

03-10 04:04:32.355 1202 1359 D fpc_hidl: onAuthenticated(fid=-1435385119, gid=0)

Logs can help identify good models

[C-1-9] MUST NOT enable 3rd-party applications to distinguish between individual fingerprints.

© 2019 Synopsys, Inc. 37

[System -> Kernel] -> [TEE]

A journey from normal world to secure world

© 2019 Synopsys, Inc. 38

fingerprintd

https://android.googlesource.com/platform/system/core/+/nougat-release/fingerprintd/fingerprintd.cpp

int main() {
ALOGI("Starting " LOG_TAG);
android::sp<android::IServiceManager> serviceManager =
android::defaultServiceManager();
android::sp<android::FingerprintDaemonProxy> proxy =

android::FingerprintDaemonProxy::getInstance();
android::status_t ret = serviceManager->addService(

android::FingerprintDaemonProxy::descriptor, proxy);
...
/*
* We're the only thread in existence, so we're just going to process
* Binder transaction as a single-threaded program.
*/

android::IPCThreadState::self()->joinThreadPool();
ALOGI("Done");
return 0;

1. Export a binder

2. Load HAL implementation

3. Proxy binder calls via in-

process proxy to HAL

implementation

© 2019 Synopsys, Inc. 39

HAL implementation

… but we can reverse it and identify HAL functionality, trustlet command ids, and extended functionality

1. Implements the functions in libhardware/include/hardware/fingerprint.h

2. Communicate with the device specific hardware

3. Is closed source

__int64 __fastcall BAuth_Enroll_Init(int *a1, __int64 a2, unsigned int a3, int a4,
_DWORD *a5, int a6, __int64 a7)
{
...
__android_log_print(3LL, "bauth_TLC_Communicator", "Call FP cmd 0x%x", 2LL);
if (!gVFMQSEEHandle)
{
...
v19 = QSEECom_send_cmd(*(_QWORD *)
gVFMQSEEHandle, v15, 384LL, v16, 64LL);

D bauth_FPBAuthService: fpop : 100023
D fingerprintd: onAcquired(10004)
D bauth_TLC_Communicator: Call FP cmd 0x2
D bauth_TLC_Communicator: Check the Trustlet return code is
completed
D bauth_FPBAuthService: check_opcode status = 1, opcode = 0,
func_ret_val = 0, function_status = 0, timeout = 0
D bauth_FPBAuthService: FPBAuthService, 1032 … and correlate the command ids with the trustlet

and logs

© 2019 Synopsys, Inc. 40

Normal-world TEE

Communication

Library

Application FingerprintManager

Fingerprintd

FingerprintService

FP Sensor

Java

Fingerprint HAL

Native

Kernel

Native

Kernel

TrustZone Kernel

TrustZone

Physical

Sensor Driver

Fingerprint Trustlet
Process

Requests authentication of CryptoObject

Abstraction glue

Manages client queues;
Handles events for

Delegates to

Makes callbacks

TEE Communication Driver

TrustZone Kernel

TrustZone

TEE Kernel

Forwards SMC call to handler

TEE Communication
Library

Sends fingerprint
commands

Makes IOCTL calls

Makes SMC call
Switches CPU to Monitor Mode

Google

Google

GoogleHW VendorHW Vendor

App Vendor

HW Vendor

HW Vendor

HW Vendor

Sensor Vendor

Sensor Vendor

SPI
Uses

1. User-space shared object

2. Closed-source, developed by

SoC vendor

3. Abstracts IOCTL commands

over kernel virtual device

© 2019 Synopsys, Inc. 41

Application FingerprintManager

Fingerprintd

FingerprintService

FP Sensor

Java

Fingerprint HAL

Native

Kernel

Native

Kernel

TrustZone Kernel

TrustZone

Physical

Sensor Driver

Fingerprint Trustlet
Process

Requests authentication of CryptoObject

Abstraction glue

Manages client queues;
Handles events for

Delegates to

Makes callbacks

TEE Communication Driver

TrustZone Kernel

TrustZone

TEE Kernel

Forwards SMC call to handler

TEE Communication
Library

Sends fingerprint
commands

Makes IOCTL calls

Makes SMC call
Switches CPU to Monitor Mode

Google

Google

GoogleHW VendorHW Vendor

App Vendor

HW Vendor

HW Vendor

HW Vendor

Sensor Vendor

Sensor Vendor

SPI
Uses

Kernel TEE

communication module

1. Protected kernel virtual device

2. Switches to secure world using Secure

Monitor Call

/dev/qsee, /dev/mobicore, /dev/tc_ns_client

© 2019 Synopsys, Inc. 42

A very short detour on some aspects of TrustZone and

TEEs

© 2019 Synopsys, Inc. 43

Exception Levels

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDDAHFB.html, A73, e.g. A8+

3.2.2 Exception levels

The Armv8 exception model defines exception levels EL0-EL3, where:

• EL3 provides support for a Secure state, see 3.2.3 Security state.

Typical exception level usage model

• EL0 Applications.

• EL1 OS kernel and associated functions that are typically described as

privileged.

• EL2 Hypervisor.

• EL3 Secure monitor.

http://infocenter.arm.com/help/topic/com.arm.doc.100048_0100_06_en/jfa1406793214854.html

© 2019 Synopsys, Inc. 44

Security state

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDDAHFB.html, A73, e.g. A8+

3.2.3 Security state

Secure state

In Secure state, the processor:

• Can access both the Secure memory address space and the Non-secure

memory address space.

• When executing at EL3, can access all the system control resources.

Non-secure state

In Non-secure state, the processor:

• Can access only the Non-secure memory address space.

• Cannot access the Secure system control resources.

© 2019 Synopsys, Inc. 45

Trust is inherently asymmetrical

In Secure state, the processor:

• Can access both the Secure memory address

space and the Non-secure memory address

space. • Dubbed “boomerang attack”, Aravind Machiry

et al.

• QSEE privilege escalation vulnerability and

exploit (CVE-2015-6639, Gal Beniami)

• Userland -> system service (media server) ->

… -> QSEE (Widevine trustlet) -> Linux kernel

Trustlets can access normal-world

memory

Shared Nwd and Swd buffers are allocated in Nwd and the (physical) address is mapped into a

trustlet virtual address by TEE OS system call from within the trustlet.

© 2019 Synopsys, Inc. 46

Secure

Monitor

Call

instruction

from Nwd

kernel

static noinline int smc_send(uint32_t cmd, phys_addr_t cmd_addr,
uint32_t cmd_type, uint8_t wait)

{
/*tlogd("start to send smc to secure\n");*/
register u64 x0 asm("x0") = cmd;
register u64 x1 asm("x1") = cmd_addr;
register u64 x2 asm("x2") = cmd_type;
register u64 x3 asm("x3") = cmd_addr >> 32;
do {

asm volatile(
__asmeq("%0", "x0")
__asmeq("%1", "x0")
__asmeq("%2", "x1")
__asmeq("%3", "x2")
__asmeq("%4", "x3")
"smc #0\n"
: "+r" (x0)
: "r" (x0), "r" (x1), "r" (x2), "r" (x3));

} while (x0 == TSP_REQUEST && wait);
return x0;

}

kernel/drivers/hisi/tzdriver/smc.c

Huawei Mate 10 (Kirin 970)

Transfer control to TEE kernel

© 2019 Synopsys, Inc. 47

AxPROT signal

Allows TEE to assert that the
signal originated from code
that is

• Privileged (as opposed to
normal)

• Secure world (as opposed to
non-secure world)

© 2019 Synopsys, Inc. 48

Fingerprint Trusted

Application

Application FingerprintManager

Fingerprintd

FingerprintService

FP Sensor

Java

Fingerprint HAL

Native

Kernel

Native

Kernel

TrustZone Kernel

TrustZone

Physical

Sensor Driver

Fingerprint Trustlet
Process

Requests authentication of CryptoObject

Abstraction glue

Manages client queues;
Handles events for

Delegates to

Makes callbacks

TEE Communication Driver

TrustZone Kernel

TrustZone

TEE Kernel

Forwards SMC call to handler

TEE Communication
Library

Sends fingerprint
commands

Makes IOCTL calls

Makes SMC call
Switches CPU to Monitor Mode

Google

Google

GoogleHW VendorHW Vendor

App Vendor

HW Vendor

HW Vendor

HW Vendor

Sensor Vendor

Sensor Vendor

SPI
Uses

• Swd counterpart of HAL

• Registers handler for SMC calls

• Event handler entry point

• Initialize the hardware driver

• Perform scan

• Create template

• Verify a reading from sensor

© 2019 Synopsys, Inc. 49

Exploring the system

© 2019 Synopsys, Inc. 50

What could go wrong?

© 2019 Synopsys, Inc. 51

Testing a device

1. Build a reference fingerprint system threat model.

Revise and adapt the model(s) for different implementations.

2. Evaluate a device by verifying that the observed controls, e.g. fingerprint template

protection, adhere to the reference threat model.

Looking for evidence of doing stupid things.

Not vulnerability hunting!

Will miss hard to find issues and hard to test issues

Is the device under test a “valid” implementation of the model?

© 2019 Synopsys, Inc. 52

Reference model(s)

Synaptics SensorTEE Kernel

Application Server

App

Application Code

App

FingerprintManager

Google

FingerprintService

fingerprint.default.so

Fingerprintd

libbauthserver.so

libbauthtzcommon.so

libMcClient.so

/dev/mobicore-user/dev/mobicore

mcDriverDaemon

libcommonpawrapper.so

libMcRegistry.so

RootPA

/dev/vfsspi

Synaptics TA

Keymaster TA

Allocates shared buffers

TZ01: Application Context

A06 C06

C05 C02 C01 A04

TA03 TA07TA04

TZ08: Internet

TA01

A05 A04 C04

TZ02: Context of Other Applications

TA02 TA04 TA07

TA04 TA07

C07

A07

A03

C06

C05

A02 C05

TZ03: Normal-world user-space

TZ04: Normal-world kernel-space

TA06
A08

TA07
C06

TZ05: Secure-world kernel-space

TA07TA05

TZ06: Secure-world user-space

A01 A02

A02 A03

A01

TA08TA07

A10 C03

A04 A09 C03

TA07TA05

TZ07: Physical Access

TA04

Google

Google
keystore

keystore.mdfpp.so

libkeymaster_mdfpp.so

libkeymaster_helper.so

Google

#mcdaemon socket

Opens and listens

Notifies TEE

C08

© 2019 Synopsys, Inc. 53

Threat model

• Example malicious actors:

• Privileged malware

• Malicious vendor or careless vendor

• Physical attacker (with access to

fingerprint models)

• Rogue trustlet

• Example controls:

• Trusted applications are signed

• Template operations inside TEE

• Templates are cryptographically authenticated

• Device specific hardware key

• Virtual device Linux file permissions, SELinux permissions set
appropriately

© 2019 Synopsys, Inc. 54

What could go wrong?

• Many mistakes possible:

• Weak device configuration

• Sensor accessible from Nwd

• Vulnerabilities in TEEOS

• Vulnerabilities in trusted application

• Template operations in Nwd

• Backdoors

• Template data outside the TEE

• Template data usable on another device

• Scan data outside the TEE

• Template data not authenticated

• Trusted application not signed

• Downgrade attack

• Fingerprint spoofing

• Application errors

© 2019 Synopsys, Inc. 55

Access the sensor directly from normal

world

Implementation guidelines

The following Fingerprint HAL guidelines are designed to ensure that fingerprint data is not

leaked and is removed when a user is removed from a device:

1. Raw fingerprint data or derivatives (e.g. templates) must never be accessible from outside

the sensor driver or TEE. If the hardware supports it, hardware access must be limited to

the TEE and protected by an SELinux policy. The Serial Peripheral Interface (SPI) channel

must be accessible only to the TEE and there must be an explicit SELinux policy on all

device files.

https://source.android.com/security/authentication/fingerprint-hal

© 2019 Synopsys, Inc. 56

AxPROT signal

Supposed to checked by

fingerprint sensor

• Blackhat USA 15: Fingerprints On

Mobile Devices, Tao Wei and

Yulong Zhang

• HTC One Max and Samsung

Galaxy S5

• Still happens today?

Fingerprintd

FP Sensor

Fingerprint HAL

Native (System)

Kernel

Native

Kernel

TrustZone Kernel

TrustZone

Physical

SPI Sensor Driver

Fingerprint Trustlet
Process

Delegates to

TEE Communication Driver

TrustZone Kernel

TrustZone

TEE Kernel

Forwards SMC call to handler

TEE Communication
Library

Sends fingerprint
commands

Makes IOCTL calls

Makes SMC call
Switches CPU to Monitor Mode

Google

HW VendorHW Vendor

HW Vendor

HW Vendor

HW Vendor

Sensor Vendor

Sensor Vendor

SPI

Uses

Privileged Malware

SPI Sensor Driver

© 2019 Synopsys, Inc. 57

Difficult to test

Source code may be

released months later

Disclaimer: not suggesting **this** device vulnerable

Nokia 8 release date: mid 2018

© 2019 Synopsys, Inc. 58

Implementation guidelines

1. … and there must be an explicit SELinux policy on all device files.

https://source.android.com/security/authentication/fingerprint-hal

Access the kernel device from unprivileged

process?

judyln:/system $ ls -lZ /dev/goodix_fp

crw-rw-rw- 1 root u:object_r:goodixfingerprintd_device:s0 225, 0 2017-
03-26 23:36 /dev/goodix_fp

We found explicit SELinux policy on all devices though some have weak Linux file permissions

© 2019 Synopsys, Inc. 59

Trustlet signing

• Qualcomm & Mobicore/Trustonic trustlets are signed

• Huawei trustlets are encrypted – could not verify

Encrypted trustlets on Huawei P10 VTR-AL00 device

© 2019 Synopsys, Inc. 60

Signature chain sometimes expired

© 2019 Synopsys, Inc. 61

Chain of trust
[C-1-8] First establish chain of trust (PIN/pattern/password)

All devices enforced this …

…, however, weak stock questions allow PIN reset

© 2019 Synopsys, Inc. 62

Fingerprint spoofing

[C-1-5] MUST rate limit attempts for at least 30 seconds after five false trials for

fingerprint verification.

All devices locked the screen after five attempts

… but then some continued to process fingerprint attempts

… and logged the result along with quality metrics

© 2019 Synopsys, Inc. 63

Attack: copy fingerprint template from

another device

Implementation guidelines:

“Fingerprint templates must be signed with a private, device-specific key.”

© 2019 Synopsys, Inc. 64

Defense: derive a device specific key

__int64 __cdecl fp_get_uniquekey()
{

int(*v0)(int, const char *, const char *, ...); // x19
unsigned int v1; // w0
__int64(*v2)(__int64, const char *, ...); // x3

v0 = g_pLogFunction;
(*g_pLogFunction)(8LL, "%s Init", qword_6A3320);
(*v0)(8LL, "fp_get_uniquekey start");
v1 = qsee_kdf(0, 32, aSamsungSecurit, 32, aFpDeviceKey, 32, g_UniqueKey, 64);
v2 = *v0;
if (!v1)

return v2(8LL, "fp_get_uniquekey success end");
v2(8LL, "qsee_kdf error rv = %d", v1);
return (*v0)(8LL, "get_uniquekey failed");

}

Template wrapping (encrypt and HMAC) is done in the trustlet

© 2019 Synopsys, Inc. 65

Attack: exploit vulnerabilities in trusted

application

• Written in C

• Buffer overflows, integer wrapping, out of secure world writes

• Complex command/template parsing logic

• Compile-time hardening (e.g. stack protector) mostly absent

© 2019 Synopsys, Inc. 66

Demo

© 2019 Synopsys, Inc. 67

What’s next?

Incremental improvements

© 2019 Synopsys, Inc. 68

Improved isolation

• Trustzone:

• The two worlds share the same hardware: isolation achieved through the use

of CPU registers and a non-secure (NS) bit.

• Separate processor on same SoC:

• Qualcomm Snapdragon SDM845 and SDM855 Secure Unit Processor

–Closer parity with Apple’s Secure Enclave

• Other vendors to follow suit?

–E.g. google bought HTC Mobile

• Addresses the issue that TrustZone applications now form a large TCB

• Doesn’t solve many of the other design properties (nor does it claim to)

© 2019 Synopsys, Inc. 69

Key attestation

• Attest that key is stored in a device's hardware-backed keystore.

• Relying party checks certificate chain signed by “Google attestation root key”

• Very small step closer to “evidence” for a second factor

• Keymaster 3:

enum class HardwareAuthenticatorType : uint32_t
{

NONE = 0u, // 0
PASSWORD = 1 << 0,
FINGERPRINT = 1 << 1,
ANY = UINT32_MAX,

};

https://source.android.com/security/keystore/tags#user_auth_type

https://developer.android.com/training/articles/security-key-attestation

© 2019 Synopsys, Inc. 70

Key takeaways

• There isn’t a single “Android” fingerprint system

– Vendors have considerable flexibility to implement subject to CDD and guidance

constraints

• Plenty of opportunities to make mistakes:

–Nwd Apps

–Nwd and Swd fingerprint components

• TEE is a high-value target:

– Image and template processing involves plenty of complex logic: bugs highly likely

–Lack of defensive measures such as stack canaries being used

• TEE TCB is becoming large.

–E.g. rogue/vulnerable trusted application could derive template key

© 2019 Synopsys, Inc. 71

A parting question

Can the fingerprint design on Android somehow be

used to support two-factor auth?

Thank you!

